

Code	11	16	22	
Triangle side length	11	16	22	
Inscribed circle	6.35	9.525	12.70	

URNING Threading Tools

Threading tools -

External threading tools

			v-type a	SHOWIT								
			B	asic di	mensio	ons(mn	n)	Applicable inserts	Inserts screw	Shim	Shim screw	Wrench
Т	уре	Stock	а	h	b	L	S		a sum	0		
	1616H16		16	16	16	100	20					
	2020K16		20	20	20	125	25			MT16-DDMN	SM4X8C	WT15IP
	2525M16		25	25	25	150	32	Z16ER0000	I60 M3.5X12TT			
	3225P16		32	32	25	170	32					
ZSER	3232P16		32	32	32	170	40					
	2525M22		25	25	25	150	32		160 M5X17		SM5X8.5	WT20IP
	3225P22		32	32	25	170	32					
	3232P22		32	32	32	170	40		100 105 17		31013/0.5	
	4040S22	Δ	40	40	40	250	50					
	1616H16		16	16	16	100	20					
	2020K16		20	20	20	125	25					
	2525M16		25	25	25	150	32	Z16ELDDDD	I60 M3.5X12TT	MT16-DDMN	SM4X8C	WT15IP
	3225P16	A	32	32	25	170	32					
ZSEL	3232P16	A	32	32	32	170	40					
	2525M22		25	25	25	150	32					
	3225P22		32	32	25	170	32		160 M5X17		SMEX8 E	
	3232P22		32	32	32	170	40			MT22-□□MN	SM5X8.5	WT20IP
	4040S22	Δ	40	40	40	250	50					

▲Stock available

∆Make-to-order

Threading Tools **TURNI**

Threading tools

C

Threading

Threading tools

Internal threading tools

_		Basic dimensions(mm)					m)		Applicable inserts	Inserts screw	Shim	Shim screw	Wrench	
Т	ӯре	Stock	d	L	b	D _{min}	S	h	L ₁		a min	0		
	0016K11		16	125	16	12	10	15	20.9	711100000	160 M2 5X6 5T			
	0016M11	•	16	150	15.5	16	10.5	15	25.9	2111(0000	100 102.370.31			****
	0016M16		16	150	15.5	20	12	15	27		I60 M3.5X08TT			
	0020M16	•	20	150	19	25	14	18	28.7					
	0020Q16		20	180	19	25	14	18	34			MT16-□□MN		
	0025M16		25	150	24	32	17	23	28.8					
	0032R16		32	200	31	40	22	30	30.9		I60 M3.5X12TT		SM4X8C	WITGIF
ZSIR	0032S16	•	32	250	31	40	22	30	30.9					
	0040T16	•	40	300	38.5	50	27	37	31.5					
	0050U16	•	50	350	49.5	63	35	49	40.2					
	0020Q22	•	20	180	21.5	25	15	18	35		I60 M5X13.2	.2		
	0025R22	•	25	200	24	32	19	23	39					WT20IP
	0032S22	•	32	250	31	40	22	30	36.4	Z22IRDDDD	ICO MEY17		OMEYO E	
	0040T22	•	40	300	38.5	50	27	37	37.2				510107.0.0	
	0050U22	•	50	350	48.5	63	35	47	42.6					
	0016K11		16	125	16	12	10	15	20.9					
	0016M11	•	16	150	15.5	16	10.5	15	25.9		160 M2.5X6.5			WT0/IP
	0016M16	•	16	150	15.5	20	12	15	27		I60 M3.5X08TT			
	0020M16	•	20	150	19	25	14	18	28.7					
	0020Q16	•	20	180	19	25	14	18	34					
	0025M16	•	25	150	24	32	17	23	28.8					
	0032R16	•	32	200	31	40	22	30	30.9		I60 M3.5X12	MT16-□□MN	SM4X8C	WITDP
ZSIL	0032S16	•	32	250	31	40	22	30	30.9					
	0040T16	•	40	300	38.5	50	27	37	31.5					
	0050U16	•	50	350	49.5	63	35	49	40.2					
	0020Q22	•	20	180	21.5	25	15	18	35		I60 M5X13.2			
	0025R22		25	200	24	32	19	23	39					
	0032S22	•	32	250	31	40	22	30	36.4	Z22IL0000			OMEYO C	WT20IP
	0040T22	•	40	300	38.5	50	27	37	37.2				SIVISX8.5	
	0050U22		50	350	48.5	63	35	47	42.6					

▲Stock available △Make-to-order

Please follow the following steps to get the best threading result:

- Select proper thread machining method.
- Oefine helical angle and select shim.
- Select proper insert and tool holder size.
- By checking reference table of standard threading programs, select feasible cutting parameters.
- Select feed way.

Machining method of threading tools

External threading machining (Right thread)

Internal threading machining (Right thread)

Internal threading machining (Left thread)

Decide helical angle and select shim

The clearance angle of threading inserts is actually along the edge (flank). This has significant effect on heat diffusion, spread of abrasion as well as tool life, security and pitch quality. The clearance angle of threading pitch on clearance face is determined by thread helical angle. These two angles are similar to each other to some extent. If inclined angle of insert is different from the helical angle, then the clearance angle won't be the same either.

The helical angle of pitch has to be the same with the inclined angle of insert to prevent over wearing on the clearance face which could affect tool life. the helical angle is calculated as below:

 $\mathbf{e} = \arctan \frac{\mathbf{p}}{\mathbf{d}_{\mathbf{2}} \times \pi}$

P= Pitch

d₂= pitch diameter

The most common inclined angle is 1°. MT standard shim and its inclined angle is also 1°. Calculation of clearance angle: Clearance angle is calculated as below:

β = arctan (tan θ × tan α)

 2θ =Thread profile angle

 α =The rake angle of external standard threading tools is 10°; the rake angle of internal standard threading tools is 15°.

The shim has to be changed when helical angle of thread is \leq clearance angle of tool, which could cause intervene on insert flank.

Please change the shim to adjust the difference between helical angle of thread and inclined angle of shim to be within $2^{\circ} \sim 0^{\circ}$.

For example: when P=1.5, d2=24mm, helical angle1.14°-(2° \sim 0°)=inclined angle (-0.86° \sim 1.14°) it is feasible to use standard shim 1°.

Shim specification table is as follows:

Screw pitch range	Insert dimensions	Inclined angle	Shim
		0	MT16-00MN
0530	16	1	MT16-01MN
0.5-5.0	10	2	MT16-02MN
		3	MT16-03MN
		0	MT22-00MN
2500	20	1	MT22-01MN
3.5-6.0	22	2	MT22-02MN
		3	MT22-03MN

Note: the standard angle of shim for our threading tools is 1°. ((MT16-01MN or MT22-01MN)

Please refer to the table below for actual value:

Thread		3
profile angle 20	External thread	Internal thread
60°	5.8°	8.79°
55°	5.24°	7.94°
30°	2.7°	4.1°
29°	2.6°	3.96°

Select shim:

Select proper inserts and size of tool holder (Please refer to detailed table of threading tools and inserts)

Parameter table for threading program under different standards

Screw pitch	1.0	1.25	1.5	1.75	2.0	2.5	3.0	4.0	5.0				
Total in-feed	0.72	0.86	1.02	1.17	1.33	1.63	1.94	2.58	3.21				
Number of passes	5	6	7	8	9	11	13	15	17				
Order to follow in	Value of radial in-feed (X) and flank in-feed (Z)												
threading operation	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z				
1	0.20/-	0.20/-	0.21/-	0.22/-	0.24/-	0.25/-	0.26/-	0.35/-	0.40/-				
2	0.18/0.10	0.18/0.10	0.18/0.10	0.20/0.12	0.22/0.13	0.24/0.14	0.24/0.14	0.30/0.17	0.35/0.20				
3	0.16/0.09	0.14/0.09	0.18/0.10	0.18/0.10	0.20/0.12	0.21/0.12	0.20/0.12	0.25/0.14	0.30/0.17				
4	0.10/0.06	0.10/0.08	0.15/0.09	0.15/0.09	0.15/0.09	0.18/0.10	0.20/0.12	0.20/0.12	0.28/0.16				
5	0.08/-	0.08/0.06	0.12/0.07	0.13/0.08	0.12/0.07	0.15/0.09	0.18/0.10	0.18/0.10	0.25/0.14				
6			0.10/0.06	0.11/0.06	0.12/0.07	0.12/0.07	0.15/0.09	0.18//0.10	0.20/0.12				
7			0.08/-	0.10/0.06	0.10/0.06	0.12/0.07	0.13/0.08	0.16/0.09	0.18/0.10				
8				0.08/-	0.10/0.06	0.10/0.06	0.12/0.07	0.15/0.09	0.16/0.09				
9					0.08/-	0.10/0.06	0.10/0.06	0.15/0.09	0.15/0.09				
10						0.08/0.05	0.10/0.06	0.13/0.08	0.15/0.09				
11						0.08/-	0.08/0.06	0.12/0.07	0.13/0.08				
12	***************************************						0.08/0.05	0.12/0.07	0.13/0.08				
13								0.11/0.06	0.12/0.07				
14								0.10/0.06	0.12/0.07				
15								0.08/-	0.11/0.06				
16									0.10/0.06				
17									0.08/-				

Table of recommended in-feed for metric ISO external threading with wiper edge

Screw pitch	1.00	1.25	1.5	1.75	2.0	2.5	3.0	4.0	5.0				
Total in-feed	0.62	0.77	0.92	1.06	1.21	0.15	1.79	2.36	2.95				
Number of passes	5	6	7	8	9	11	13	15	17				
Order to follow in		Value of radial in-feed (X) and flank in-feed (Z)											
threading operation	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z				
1	0.18/-	0.20/-	0.22/-	0.23/-	0.24/-	0.25/-	0.26/-	0.30/-	0.32/-				
2	0.14/0.08	0.15/0.09	0.16/0.09	0.16/0.09	0.18/0.10	0.20/0.12	0.20/0.12	0.25/0.14	0.28/0.16				
3	0.12/0.07	0.12/0.07	0.14/0.08	0.14/0.08	0.15/0.09	0.15/0.09	0.20/0.12	0.22/0.13	0.25/0.14				
4	0.10/0.06	0.12/0.07	0.12/0.07	0.13/0.08	0.14/0.08	0.15/0.09	0.18/0.10	0.20/0.12	0.22/0.13				
5	0.08/-	0.10/0.06	0.11/0.06	0.12/0.07	0.12/0.07	0.13/0.08	0.15/0.09	0.18/0.10	0.21/0.12				
6			0.09/0.05	0.10/0.06	0.11/0.06	0.12/0.07	0.12/0.07	0.15/0.09	0.20/0.12				
7			0.08/-	0.10/0.06	0.10/0.06	0.12/0.07	0.12/0.07	0.15/0.09	0.18/0.10				
8				0.08/-	0.09/0.05	0.10/0.06	0.10/0.06	0.15/0.09	0.18/0.10				
9					0.08/-	0.10/0.06	0.10/0.06	0.12/0.07	0.15/0.09				
10						0.09/0.05	0.10/0.06	0.12/0.07	0.15/0.09				
11						0.08/-	0.10/0.06	0.12/0.07	0.15/0.09				
12							0.08/0.05	0.11/0.06	0.15/0.09				
13								0.11/0.06	0.12/0.07				
14								0.10/0.06	0.11/0.06				
15								0.08/-	0.10/0.06				
16									0.10/0.06				
17									0.08/-				

Table of recommended in-feed for metric ISO internal threading with wiper edge

Table of recommended in-feed for American unified standard external threading with wiper edge

Sorow nitch			40						•	•	_		_		
	24	20	18	16	14	12	11	10	9	8	7	6	5		
Total in-feed	0.649	0.779	0.866	0.974	1.113	1.299	1.416	1.558	1.731	1.948	2.226	2.597	3.116		
Number of passes	5	6	6	7	9	9	10	11	12	13	14	15	16		
Order to follow in				Val	ue of rad	lial in-fee	d (X) and	l flank in-	flank in-feed (Z)						
threading operation	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z		
1	0.206	0.210	0.233	0.226	0.196	0.229	0.220	0.214	0.210	0.211	0.213	0.218	0.229		
2	0.148	0.163	0.181	0.188	0.189	0.222	0.228	0.240	0.256	0.276	0.304	0.343	0.399		
3	0.114	0.125	0.139	0.145	0.146	0.170	0.176	0.184	0.196	0.212	0.234	0.263	0.306		
4	0.096	0.105	0.117	0.122	0.123	0.143	0.148	0.155	0.165	0.179	0.197	0.222	0.258		
5	0.085	0.093	0.103	0.107	0.108	0.126	0.131	0.137	0.146	0.158	0.173	0.195	0.227		
6		0.084	0.093	0.097	0.098	0.114	0.118	0.124	0.132	0.142	0.157	0.177	0.205		
7				0.089 0.052	0.090	0.105	0.109	0.114	0.121	0.131	0.144	0.163	0.189 0.109		
8					0.084	0.098	0.101	0.106	0.113	0.122	0.134	0.151	0.176		
9					0.079	0.092	0.095	0.100	0.106	0.114	0.126	0.142	0.165		
10							0.090	0.094	0.100	0.108	0.119	0.134	0.156		
11								0.090	0.095	0.103	0.113	0.128	0.149		
12									0.091	0.098	0.108	0.122	0.142		
13										0.094	0.104	0.117	0.136 0.079		
14											0.100	0.113	0.131		
15												0.109	0.126		
16													0.122		

Screw pitch	24	20	18	16	14	12	11	10	9	8	7	6	5
Total in-feed	0.573	0.687	0.764	0.860	0.982	1.146	1.250	1.375	1.528	1.719	1.964	2.291	2.750
Number of passes	5	6	6	7	8	9	9	10	11	12	13	14	15
Order to follow in				Val	ue of rac	lial in-fee	d (X) and	l flank in-	feed (Z)				
threading operation	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z
1	0.193	0.200	0.222	0.219	0.220	0.228	0.250	0.247	0.246	0.252	0.262	0.278	0.302
2	0.127	0.239	0.155	0.161	0.173	0.190	0.207	0.216	0.229 0.132	0.247	0.271	0.304	0.353
3	0.098	0.107	0.119	0.124	0.132	0.146	0.159	0.166	0.176	0.189 0.109	0.208	0.234	0.271
4	0.082	0.090	0.100	0.104	0.112	0.123	0.134	0.140	0.148	0.160	0.175	0.197	0.228
5	0.073	0.079	0.088	0.092	0.098	0.108	0.118	0.123	0.130	0.141	0.1543	0.173	0.201
6		0.072	0.080	0.083	0.089	0.098	0.107	0.111	0.118	0.127	0.140	0.157	0.182
7				0.077	0.082	0.090	0.098	0.102	0.108	0.117	0.128	0.144	0.167
8					0.076	0.084	0.091	0.095	0.101	0.109	0.119	0.134	0.156
9						0.079	0.086	0.090	0.095	0.102	0.112	0.126	0.146
10								0.085	0.090	0.097	0.106	0.119	0.138
11									0.085	0.092	0.101	0.113	0.131
12										0.088	0.096	0.108	0.126
13											0.092	0.101	0.121
14												0.100	0.116
15													0.112

Table of recommended in-feed for American unified standard internal threading with wiper edge

E Table of recommended in-feed for British standard internal and external threading with wiper edge

Screw nitch	20	20	40	46		40	44	40	•	•	-	c	E
Total in food	28	20	19	10	14	12	11	10	9	Ö	1	0	э
	0.581	0.813	0.856	1.017	1.162	1.355	1.479	1.626	1.807	2.033	2.324	2.711	3.253
Number of passes	5	6	6	8	8	9	9	10	11	12	14	15	16
Order to follow in			I	Val	ue of rac	lial in-fee	d (X) and	flank in-	feed (Z)				
threading operation	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z	x/z
1	0.179	0.211	0.223	0.196	0.223	0.226	0.246	0.236	0.230	0.255	0.195	0.197	0.204
2	0.134	0.172	0.181	0.186	0.213	0.234	0.255	0.226	0.282	0.304	0.322	0.361	0.421
3	0.104	0.132	0.139	0.143	0.163	0.180	0.197	0.206	0.216	0.233	0.247	0.278	0.323
4	0.087	0.111	0.117	0.120	0.138	0.151	0.165	0.172	0.182	0.197	0.208	0.234	0.272
5	0.077	0.098	0.103	0.106	0.121	0.133	0.145	0.152	0.161	0.1738	0.183	0.207	0.240
6		0.089	0.093	0.096	0.110	0.121	0.131	0.137	0.145	0.157	0.166	0.187	0.217
7				0.088	0.101	0.111	0.121	0.126	0.134	0.144	0.152	0.172	0.200
8				0.082	0.093	0.103	0.113	0.117	0.124	0.134	0.142	0.160	0.186
9						0.097	0.106	0.110	0.117	0.126	0.133	0.150	0.174
10								0.104	0.111	0.119 0.062	0.126	0.142	0.165
11									0.105	0.113	0.120	0.135	0.157
12										0.108	0.114	0.129	0.150
13											0.110	0.124	0.144
14												0.119	0.138
15												0.115	0.133
16													0.129

Screw pitch	27	18	14	11.5	8							
Total in-feed	0.75	1.129	1.451	1.767	2.54							
Number of passes	6	8	10	12	14							
Order to follow in	Value of radial in-feed (X) and flank in-feed (Z)											
threading operation	x/z	x/z	x/z	x/z	x/z							
1	0.19/-	0.22/-	0.240/-	0.24/-	0.255/-							
2	0.15/0.087	0.181/0.104	0.200/0.115	0.208/0.120	0.250/0.144							
3	0.13/0.075	0.152/0.088	0.170/0.098	0.182/0.105	0.245/0.141							
4	0.11/0.063	0.141/0.081	0.150/0.086	0.168/0.097	0.230/0.133							
5	0.09/0.052	0.131/0.075	0.140/0.081	0.155/0.089	0.210/0.121							
6	0.08/0.46	0.121/0.070	0.130/0.075	0.145/0.084	0.195/0.112							
7		0.101/0.058	0.120/0.069	0.138/0.079	0.180/0.104							
8		0.082/0.047	0.110/0.063	0.124/0.072	0.175/0.101							
9			0.100/0.058	0.117/0.067	0.170/0.098							
10			0.091/0.052	0.105/0.060	0.155/0.089							
11				0.095/0.055	0.140/0.080							
12				0.090/0.052	0.125/0.072							
13					0.110/0.063							
14					0.100/0.058							

Table of recommended in-feed for NPT internal and external threading with wiper edge

E Table of recommended in-feed for BSPT internal and external threading with wiper edge

Screw pitch	28	19	14	11
Total in-feed	0.581	0.856	1.162	1.479
Number of passes	5	6	8	10
Order to follow in		Value of radial in-feed (X	() and flank in-feed (Z)	
threading operation	x/z	x/z	x/z	x/z
1	0.179/-	0.223/-	0.222/-	0.214/-
2	0.134/0.070	0.181/0.094	0.213/0.111	0.242/0.126
3	0.103/0.054	0.139/0.072	0.163/0.085	0.186/0.097
4	0.087/0.045	0.117/0.061	0.138/0.072	0.157/0.082
5	0.078/0.040	0.103/0.054	0.121/0.063	0.138/0.072
6		0.093/0.049	0.110/0.057	0.125//0.065
7			0.101/0.052	0.115/0.060
8			0.094/0.049	0.107/0.056
9				0.100/0.052
10				0.095//0.049

General turning

URNING Threading Tools

Application information of threading -

Table of recommended cutting parameters

						Grade
ISO	Material		Unit cutting force Kc0.4 N/mm ²	Hardness HB	YBG202 YBG203 YBG205	
						Cutting speed(m/min)
		C=0.	15%	1900	125	150-175
	Carbon steel	C=0.35%		2100	150	140-155
		C=0.60%		2250	200	130-145
	Alloy steel	Anneal		2100	180	110-130
		Hardened		2600	275	80-100
		Hardened		2700	300	70–90
Р		Hardened		2850	350	60-80
		Anneal		2600	200	90-115
	High alloy steel	Hardened		3900	325	70–90
	Cast steel	Non-alloy		2000	180	180-210
		low alloy		2500	200	90–115
		high alloy		2700	225	90–115
		Martensite steel 12%Mn		3600	250	40-50
КЛ	Stainless steel	Austenite		2450	180	110-130
	उखागल्डे रिस्सि	Martensite/Ferrite		2300	200	130-170
	Malleable cast iron	Ferrite		1100	130	110-140
		Pearlite		1100	230	85-105
	Gray cast iron	Low tensile-strength		1100	180	110-140
		High tensile-strength		1500	260	90-115
		Feri	ite	1100	160	110-130
	Nodular cast iron	Pearlite		1800	250	80-100
	A	Non-aging treatment Aging treatment		500	60	1300-1450
	Al alloy			800	100	450-500
	Cast aluminum alloy	Non-aging treatment Aging treatment		750	75	430-470
				900	90	250-290
	Heat resistant alloy	Iron base	Anneal	3000	200	35-50
S			Aging	3050	280	25-35
		Ni- or Co- base	Anneal	3500	250	15-25
			Aging	4150	350	10-20
			Casting	4150	320	10-15
Η	Hardened steel	Hardene	ed steel	4500	HRC55	40-50

Note: •The values in the above table are range values. High values in the range could be considered in actual cutting. When trying new cutting speed, please check the cutting edge condition before operation.

• In stainless steel threading, high cutting speed should be used to prevent built-up edge.

•The cutting parameters should be reduced when cutting small pitch thread and when using tools with small nose radius.

•When cutting thread by tools with small nose radius, such as NPT standard thread, it is advisable to use tools with big nose radius first to rough, so as to improve the life of tools with small nose radius.

ting and **Threading** Application information of threading

In-feed way of threading tools

Radial in-feed		
	 Easy operating, high general. V-shape chip caused by long chip steel workpiece will produce big bend stress on cutting edge. It requires low cutting depth, sharp cutting edge and good tough material. Big quantity of heat when cutting ,V-shape chip is hard to control. Because the interface of cutting chips on the right and left side is long, so it is easy to cause vibration and make the cutting edge suffer more overloading. 	

Flank in-feed

- Cutting edge suffer small bend stress, stable estate, it is easy for chips formation in deep cutting depth.
- There are enough space to leave chips flow when flank in-feed.
- · Big abrasion on right flank.

Modified flank in-feed

- Right Cutting Edge also engage on cutting depth to a certain extent, it can reduce the abrasion on right side of clearance face.
- Cutting edge suffer small bend stress, stable estate, it is easy for chips formation in deep cutting depth.
- Good Cutting Performance.

Alternate flank in-feed

- Cutting edge trade off when machining, equality abrasion on left and right side of clearance face on cutting edge, it can improve the life of tools.
- Chips are flowing from both of right and left side, good chips flowing.
- · Recommend using in big screw-pitch thread cutting.

Recommend adopting flank in-feed or alternate flank in-feed under allowable range of machining equipment or programmer, it can eliminate the machining vibration effectively, and it has enough space discharge the chips between pitch. Cutting edge suffer a small stress, machining stable, it likes the general turning process when machining thread, good chip control without extra chips.